Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective.

Identifieur interne : 001268 ( Main/Exploration ); précédent : 001267; suivant : 001269

Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective.

Auteurs : Jay P. Maurya [Suède] ; Rishikesh P. Bhalerao [Suède]

Source :

RBID : pubmed:28605491

Descripteurs français

English descriptors

Abstract

Background

How plants adapt their developmental patterns to regular seasonal changes is an important question in biology. The annual growth cycle in perennial long-lived trees is yet another example of how plants can adapt to seasonal changes. The two main signals that plants rely on to respond to seasonal changes are photoperiod and temperature, and these signals have critical roles in the temporal regulation of the annual growth cycle of trees.

Scope

This review presents the latest findings to provide insight into the molecular mechanisms that underlie how photoperiodic and temperature signals regulate seasonal growth in trees.

Conclusion

The results point to a high level of conservation in the signalling pathways that mediate photoperiodic control of seasonal growth in trees and flowering in annual plants such as arabidopsis. Furthermore, the data indicate that symplastic communication may mediate certain aspects of seasonal growth. Although considerable insight into the control of phenology in model plants such as poplar and spruce has been obtained, the future challenge is extending these studies to other, non-model trees.


DOI: 10.1093/aob/mcx061
PubMed: 28605491
PubMed Central: PMC5591416


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective.</title>
<author>
<name sortKey="Maurya, Jay P" sort="Maurya, Jay P" uniqKey="Maurya J" first="Jay P" last="Maurya">Jay P. Maurya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901?83 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901?83 Umeå</wicri:regionArea>
<wicri:noRegion>SE-901?83 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bhalerao, Rishikesh P" sort="Bhalerao, Rishikesh P" uniqKey="Bhalerao R" first="Rishikesh P" last="Bhalerao">Rishikesh P. Bhalerao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901?83 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901?83 Umeå</wicri:regionArea>
<wicri:noRegion>SE-901?83 Umeå</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28605491</idno>
<idno type="pmid">28605491</idno>
<idno type="doi">10.1093/aob/mcx061</idno>
<idno type="pmc">PMC5591416</idno>
<idno type="wicri:Area/Main/Corpus">001291</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001291</idno>
<idno type="wicri:Area/Main/Curation">001291</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001291</idno>
<idno type="wicri:Area/Main/Exploration">001291</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective.</title>
<author>
<name sortKey="Maurya, Jay P" sort="Maurya, Jay P" uniqKey="Maurya J" first="Jay P" last="Maurya">Jay P. Maurya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901?83 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901?83 Umeå</wicri:regionArea>
<wicri:noRegion>SE-901?83 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bhalerao, Rishikesh P" sort="Bhalerao, Rishikesh P" uniqKey="Bhalerao R" first="Rishikesh P" last="Bhalerao">Rishikesh P. Bhalerao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901?83 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901?83 Umeå</wicri:regionArea>
<wicri:noRegion>SE-901?83 Umeå</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Photoperiod (MeSH)</term>
<term>Picea (physiology)</term>
<term>Plant Dormancy (MeSH)</term>
<term>Populus (physiology)</term>
<term>Seasons (MeSH)</term>
<term>Temperature (MeSH)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (physiologie)</term>
<term>Dormance des plantes (MeSH)</term>
<term>Photopériode (MeSH)</term>
<term>Picea (physiologie)</term>
<term>Populus (physiologie)</term>
<term>Saisons (MeSH)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Picea</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Picea</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Photoperiod</term>
<term>Plant Dormancy</term>
<term>Seasons</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dormance des plantes</term>
<term>Photopériode</term>
<term>Saisons</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>Background</b>
</p>
<p>How plants adapt their developmental patterns to regular seasonal changes is an important question in biology. The annual growth cycle in perennial long-lived trees is yet another example of how plants can adapt to seasonal changes. The two main signals that plants rely on to respond to seasonal changes are photoperiod and temperature, and these signals have critical roles in the temporal regulation of the annual growth cycle of trees.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Scope</b>
</p>
<p>This review presents the latest findings to provide insight into the molecular mechanisms that underlie how photoperiodic and temperature signals regulate seasonal growth in trees.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Conclusion</b>
</p>
<p>The results point to a high level of conservation in the signalling pathways that mediate photoperiodic control of seasonal growth in trees and flowering in annual plants such as arabidopsis. Furthermore, the data indicate that symplastic communication may mediate certain aspects of seasonal growth. Although considerable insight into the control of phenology in model plants such as poplar and spruce has been obtained, the future challenge is extending these studies to other, non-model trees.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">28605491</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>12</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>120</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
<Month>09</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective.</ArticleTitle>
<Pagination>
<MedlinePgn>351-360</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mcx061</ELocationID>
<Abstract>
<AbstractText Label="Background">How plants adapt their developmental patterns to regular seasonal changes is an important question in biology. The annual growth cycle in perennial long-lived trees is yet another example of how plants can adapt to seasonal changes. The two main signals that plants rely on to respond to seasonal changes are photoperiod and temperature, and these signals have critical roles in the temporal regulation of the annual growth cycle of trees.</AbstractText>
<AbstractText Label="Scope">This review presents the latest findings to provide insight into the molecular mechanisms that underlie how photoperiodic and temperature signals regulate seasonal growth in trees.</AbstractText>
<AbstractText Label="Conclusion">The results point to a high level of conservation in the signalling pathways that mediate photoperiodic control of seasonal growth in trees and flowering in annual plants such as arabidopsis. Furthermore, the data indicate that symplastic communication may mediate certain aspects of seasonal growth. Although considerable insight into the control of phenology in model plants such as poplar and spruce has been obtained, the future challenge is extending these studies to other, non-model trees.</AbstractText>
<CopyrightInformation>© The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Maurya</LastName>
<ForeName>Jay P</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901?83 Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhalerao</LastName>
<ForeName>Rishikesh P</ForeName>
<Initials>RP</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901?83 Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017440" MajorTopicYN="Y">Photoperiod</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028222" MajorTopicYN="N">Picea</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057445" MajorTopicYN="Y">Plant Dormancy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="Y">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Hybrid aspen (Populus tremula × P. tremuloides)</Keyword>
<Keyword MajorTopicYN="Y">dormancy</Keyword>
<Keyword MajorTopicYN="Y">ecodormant</Keyword>
<Keyword MajorTopicYN="Y">endodormant</Keyword>
<Keyword MajorTopicYN="Y">growth cessation</Keyword>
<Keyword MajorTopicYN="Y">phenology</Keyword>
<Keyword MajorTopicYN="Y">seasonal growth</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>12</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28605491</ArticleId>
<ArticleId IdType="pii">3866655</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcx061</ArticleId>
<ArticleId IdType="pmc">PMC5591416</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2001 Apr 26;410(6832):1116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11323677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Jun 19;17(12):1050-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jun 03;5:247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24917873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2015 Sep;116(4):703-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26337519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1970 Sep 25;169(3952):1269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17772511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Jun;228(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18324412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jun;62(10):3481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2003 Dec;130(24):6001-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20143130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25713384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3418-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21289280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Nov;62(15):5397-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21862485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2004 Sep;5(9):712-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15340379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2016;11(2):e1073873</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26317150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Mar;66(5):1527-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25560179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Nov;7(11):e1002361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2013 Jun;16(3):301-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23473967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 12;309(5737):1052-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16099979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Aug 12;14:216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25112962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:573-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2015 Jan 10;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25580596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(4):557-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Sep;157(1):485-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21795580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 31;476(7360):332-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21804566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 20;9(1):e86217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24465967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 May;46(4):628-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16640599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2014 Nov 26;1:14059</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26504555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 May 1;62(4):674-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):130-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):750-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2014 Sep 02;6(9):a019471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25183832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Oct;35(10):1707-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22670814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Oct;163(2):792-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23958861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Oct;26(2):657-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7948920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Apr;214(6):920-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11941469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Apr;25(4):1228-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23613197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Dec 17;5:732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25566302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Dec;11(6):680-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18824402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Apr;12(2):178-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19195924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):581-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19223515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1998 Apr;125(8):1477-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9502728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 May 27;2(6):16075</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27255839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Dec 17;6:989</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26734012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Apr;82(2):256-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25740115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Jan;25(1):109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15519992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2017 Feb;119(3):311-323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28087658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Oct 07;14:263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25287450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Aug;75(3):456-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23607279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1294-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20847139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Jul;9(7):1055-1066</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12237375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Apr;65(7):1737-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24347464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):143-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20229130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Sep;43(5):688-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2370-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 11;10(5):e0126030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25961298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2007 Sep;2(5):404-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):1846-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Nov 19;360(6401):273-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1359429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(12):3249-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17977848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):10001-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24951507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Oct;16(10):2553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Mar 31;24(7):717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24656832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 May 18;316(5827):1030-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Open. 2015 Sep 04;4(10):1229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26340943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1997 Jul;8(7):1243-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9243505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Feb;205(3):1288-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25382585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Nov;71(4-5):403-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19653104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Jun;38(6):1157-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25311427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Aug;153(4):1823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20530613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jan;193(1):67-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(7):2169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19357429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2012;63:239-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22136566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 Feb;15(2):160-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9491613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 May;12(5):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Aug;12(8):352-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17629542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):169-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20066557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 12;309(5737):1056-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16099980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 Aug;2(8):741-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1983792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):37-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20213333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2736-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:387-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18257711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 May;31(5):472-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jul 1;63(1):60-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20374529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1885-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Nov 12;9:536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2003 Apr;14(2):206-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2007 Mar;8(3):217-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17304247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jan 8;427(6970):164-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14712277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jan;213(2):511-524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27901272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Mar;34(3):480-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118421</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Maurya, Jay P" sort="Maurya, Jay P" uniqKey="Maurya J" first="Jay P" last="Maurya">Jay P. Maurya</name>
</noRegion>
<name sortKey="Bhalerao, Rishikesh P" sort="Bhalerao, Rishikesh P" uniqKey="Bhalerao R" first="Rishikesh P" last="Bhalerao">Rishikesh P. Bhalerao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001268 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001268 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28605491
   |texte=   Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28605491" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020